

D4.4 Medolution Platform APIs and

Specification V2

Medolution
Medical Care Evolution

ITEA3 ï Project 14003

Document Properties

Edited by : François Exertier, Bull

Authors François Exertier (Bull), Mathis Gavillon (Bull), David Kuik (Norima), James Eichele

(Norima), Mihai Mitrea (IMT), Anil Sinaci (SRDC), Mert Baĸkaya (SRDC), Béchir Taleb

Ali (Prologue), Wolfgang Thronicke (Atos DE)

Date 25/10/2017

Visiblity Public

Status Final

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 2 of 76

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 3 of 76

History of Changes

Release Date Author, Organization Changes

0.1 09/2017 F. Exertier, Bull Initial version, based on D4.1, ready for

partners contribution

0.2 09/2017 F. Exertier, Bull Bull contribution

0.3 10/2017 F. Exertier, Bull Integration of contributions from SRDC, IMT,

Atos DE

0.4 10/2017 F. Exertier, Bull Integration of contribution from NORIMA

0.5 10/2017 F. Exertier, Bull Add a glossary

0.6 10/2017 F. Exertier, Bull Final version of NORIMA contribution

integrated. Ready for review.

0.7 10/2017 F. Exertier, Bull Integration of fixes from official PMT Review

by Gokce Banu Laleci Erturkmen

1.0 10/2017 F. Exertier, Bull Taking into account feedback from official

PMT Review by Céline Badr. Final version.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 4 of 76

Table of Contents

HISTORY OF CHANGES ... 3

1. EXECUTIVE SUMMARY.. 7

2. CHANGES LOG .. 8

3. INTRODUCTION .. 9

4. MEDOLUTION PLATFORM DESCRIPTION ... 10

4.1. DATA AND SERVICES HUB PLATFORM ... 10

4.2. COMPONENTS CATALOGUE AND TOPOLOGIES ... 11

4.3. ORCHESTRATOR AND TARGET INFRASTRUCTURES .. 12

4.4. MEDOLUTION SECURITY AND PRIVACY ... 12

5. THE MEDOLUTION BIG DATA COMPONENTS CATALOGUE ... 13

5.1. CORE FOUNDATIONAL COMPONENTS .. 13

5.2. DATA COLLECTION AND STORAGE COMPONENTS ... 13

5.2.1. Elasticsearch ... 13
5.2.1.1. Elasticsearch API .. 14
5.2.1.2. Elasticsearch Relationships ... 14

5.2.2. Kafka ... 14
5.2.2.1. Kafka API ... 15
5.2.2.2. TOSCA component description .. 15
5.2.2.3. Kafka Relationships .. 17

5.2.3. Logstash .. 17

5.2.4. HBase .. 18
5.2.4.1. HBase Master ... 18
5.2.4.2. HBase Region Server .. 19

5.2.5. Hive ... 20
5.2.5.1. Hive API ... 20

5.2.6. Drill .. 21
5.2.6.1. Drill API .. 21

5.2.7. Flume .. 21
5.2.7.1. Flume API ... 21

5.3. DEVICE CONNECTOR COMPONENT .. 22

5.3.1. Devices to be connected .. 23
5.3.1.1. Bluetooth enabled medical devices .. 23
5.3.1.2. Activity tracker wristband ... 24
5.3.1.3. Smart phone ... 24

5.3.2. Devices particularities with respect to data connection ... 25
5.3.3. Medolution device connector when device data are exposed 26

5.3.3.1. Data to be collected .. 26
5.3.3.2. Device Connector Application Program Interface (API) ... 27
5.3.3.2.1. Binary payload .. 27
5.3.3.2.2. JSON payload ... 28

5.3.4. Medolution device connector when device data are not exposed 30
5.3.5. Conclusion ... 32

5.4. DATA CONNECTOR COMPONENTS.. 33

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 5 of 76

5.4.1. Sqoop .. 33
5.4.1.1. MapRSqoop2Server API ... 33
5.4.1.2. MapRSqoop2Client API ... 33

5.4.2. EHR Data Connector ... 34
5.4.2.1. HL7 Clinical Document Architecture (CDA) .. 34
5.4.2.2. HL7 Fast Healthcare Interoperability Resources (FHIR) .. 35
5.4.2.3. CDA Payload .. 37
5.4.2.4. FHIR Payload ... 37
5.4.2.5. TOSCA Component Description .. 38

5.5. DATA ANALYTICS COMPONENTS .. 38

5.5.1. Rstudio .. 39
5.5.1.1. Rstudio API ... 39

5.5.2. Python ... 40

5.5.3. Jupyter .. 40
5.5.4. NIFI ... 41
5.5.5. Flink... 43

5.5.5.1. Flink API ... 44
5.5.5.2. Flink JobManager .. 44
5.5.5.3. Flink TaskManager .. 45

5.5.6. Spark ... 46
5.5.6.1. Spark API ... 46

5.5.7. Pig ... 47
5.5.7.1. Pig API ... 47

5.5.8. Mahout .. 48
5.5.8.1. Mahout API ... 48

5.6. VISUALIZATION COMPONENTS ... 48

5.6.1. Kibana ... 48
5.6.1.1. Kibana Interface .. 48
5.6.1.2. Kibana Configuration ... 49

5.7. DATA DISTRIBUTION & RESOURCE MANAGEMENT COMPONENTS ... 50

5.7.1. MapR Filesystem ... 50
5.7.1.1. MapRCldb ... 50
5.7.1.2. MapRFileserver ... 51

5.7.2. YARN .. 52
5.7.2.1. YARN Resource manager ... 52
5.7.2.2. YARN Node manager .. 53

6. MAIN MEDOLUTION BIG DATA TOPOLOGIES ... 55

6.1. LAMBDA ARCHITECTURE .. 55

6.2. KAPPA ARCHITECTURE .. 57

6.3. EVENT SOURCING AND CQRS ARCHITECTURES ... 58

6.4. CONCRETE ARCHITECTURE OF THE LVAD MEDICAL USE CASE ... 59

7. SECURITY ... 62

7.1. SECURITY PRINCIPLES .. 62

7.2. DATA ANONYMIZATION .. 62

7.2.1. Data Sharing Connector ... 64

7.2.2. Data Access Connector ... 64

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 6 of 76

7.2.3. Anonymization Engine ... 64
7.2.4. Data Catalog .. 64
7.2.5. Data Administrator UI ... 65
7.2.6. Data Custodian UI.. 65
7.2.7. Data Researcher UI ... 65

7.2.8. Concrete application example: ... 66
7.2.9. Data Anonymization Concepts ... 67

7.2.9.1. Generalization ... 67
7.2.9.2. Re-Identification Risk .. 68
7.2.9.3. Suppression .. 68
7.2.9.4. Quantifying Data Loss ... 69

7.3. MANAGING ACCESS RIGHTS ... 70

7.4. SECURED DATA TRANSMISSION .. 70

8. MEDOLUTION PLATFORM APIS ... 71

9. HOSTING PLATFORMS .. 72

10. LIST OF FIGURES... 73

11. LIST OF TABLES .. 74

12. GLOSSARY ... 75

13. REFERENCES .. 76

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 7 of 76

1. Executive Summary

This document is an update of the deliverable D4.1: Medolution Platform APIs and Specification

V1. It includes new components and architecture patterns that partners have developed in the

timeframe after the delivery of D4.1, as well as updates to the ones that were described in D4.1.

The choice has been made to provide an update of the V1 specification in order to get a

standalone reference document. The changes brought to D4.1 are highlighted and pointed in the

Changes Log section 2.

This document describes the Medolution Core platform. The main role of the Medolution Core

platform is to provide the execution support for Medolution applications in terms of Big Data

related services, software engineering support (design, deployment), and connection to devices

and data warehouses. It makes the link between data sources (data warehouses, devices defined

in WP3é), and the applications developed in WP5, that will be built using big data related

services provided by the platform, and that will potentially run on the platform.

The document describes the platform principles, as initiated in the FPP document and based on

the Bull Big Data Capabilities Framework (BDCF). BDCF provides capabilities to build Big Data

Applications by composing software components delivered in an associated catalogue, and then

to deploy it on any Cloud but, in particular, on the WP4 hosting platform, which provides hardware

features particularly suitable to Big Data processing. As the Medolution platform described in this

document is based on BDCF, the term BDCF is sometime used as synonym of Medolution

Platform.

The document includes the description of most of the components and blueprints (architecture

patterns also called topologies) delivered with BDCF that are suitable for building Medolution

applications dealing with Big Data processing. These are typically generic Big Data processing

components and blueprints, including those related to Big Data Real Time stream processing. In

addition, Atos DE has provided a blueprint representative of the LVAD (Left Ventricular Assist

Device) Use Case, which should be implemented as a BDCF topology.

Among platform components, the device connector components have the role to collect data

generated by devices and to route it to big data processing components.

Finally, security is addressed. In particular, Norima has provided the specification of components

implementing anonymization.

The APIs of the WP4 platform are provided in two categories:

Á the APIs of the catalogue components which will be used by applications are described in

section 5,

Á the platform API used to operate the platform is described in section 8.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 8 of 76

2. Changes Log

This section highlights the main changes between the first version of Medolution Platform APIs

and Specification V1 (D4.1 [1]) and the second version presented in this document (D4.4).

Some updates have been contributed on device and data connectors:

Á The TOSCA definition of the Device Connector API has been added in section 5.3.3.2.

Á Progress relative to designing a Medolution device connector when device data are not

exposed has been added to section 5.3.4.

Á An EHR Data Connector has been added in section 5.4.2.

Four components related to Data Analytics processing have been added in the Medolution Big

Data Components Catalogue in section 5:

¶ Jupyter is described in section 5.5.3

¶ Python is described in section 5.5.2

¶ Apache NIFI is described in section 5.5.4

¶ Flink is described in section 5.5.5

Two Big Data topologies have been added in section 6, following up studies conducted during the

project on streaming processing technics, in order to satisfy the low latency required by

Healthcare applications dealing with devices data flows:

¶ The Kappa architecture is described in section 6.2

¶ Event Sourcing and CQRS architectures are described in section 6.3

Few considerations about scaling and security have been added to the section 6.4 describing the

LVAD use case topology.

About security,

¶ Section 7.1 has been updated including an example of a secured data lake set up for the

purpose of a partner use case.

¶ Section 7.2 has been updated according to some design changes in the anonymization

components.

¶ Section 7.3 has been updated, adding results of work conducted on securing the Elastic

components stack.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 9 of 76

3. Introduction

This document describes the WP4 platform and its APIs which satisfies the following objectives

defined in the FPP:

Á Software Platform

- to connect Heterogeneous Healthcare Data Sources (Sensors, Data Warehouses,

Internet sourcesé)

- to provide Big Data related technical services (mediation, storage, analysisé)

- to connect, compose and host applicative services (WP5) based on Big Data

services

Á Reactive Big Data Framework

- to deliver insights on-the-fly to healthcare staff, with low latency, based on

experimenting in memory processing, stream processing, Lambda architectures

Á Software Engineering

- to build and deploy easily ñ¨ la carteò Big Data Software Stacks

Á Security

- to enable encryption, anonymization, tracking

As mentioned in Medolution deliverable D1.1 [2] about the State of the Art Analysis, regarding the

IoT Big Data platforms, the innovative aspects of this Core Platform will be to reduce the

complexity of building Big Data software applicative stacks, however still allowing components

choice and facilitating cloud deployment; the focus will also be set on integrating advanced real-

time Big Data processing technologies. Taking into account access to Healthcare devices and

Data Privacy aspects in this platform will also be part of the solution. Medolution partners have

provided innovative solutions to connect any kind of devices to the Medolution platform, enabling

to route data to the appropriate data analysis and processing components (cf. section 5.3).

Experimenting innovative anonymization technics will be possible through the integration of the

anonymization system developed in this work package (cf. section 7.2).

Section 4 describes the principle of the platform, i.e. a composition PaaS based on a catalogue of

Big Data and Medolution related software components, providing scalability, reliability and

security.

Section 5 describes the platform catalogue components, mainly generic big data processing

related components (storage, collect, analysis, and visualization) delivered with the BDCF

software, as well as the specification of the Medolution Device Connector, which enables

connection of the IoT devices of WP3 with the WP4 platform.

Section 6 is dedicated to blueprints that will be delivered with the platform to satisfy Medolution

applications architecture requirements. It provides real time stream processing blueprints that are

delivered as topologies in the BDCF catalogue, and the blueprint which supports the LVAD

Medolution use case.

In section 7 the specification of anonymization components and general security features as

supported in BDCF are briefly described.

Finally, section 8 provides a short description of the API to operate the platform.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 10 of 76

4. Medolution Platform Description

This section describes the principles of the Medolution Platform.

4.1. Data and services hub platform

The Medolution platform aims to support whole Big Data capacity and IoT connectors as a

service. It is composed by three main layers:

¶ Virtualization: hardware resources are shared between all applications. An Infrastructure

as a Service (IaaS) provides the ability to allocate these resources on demand.

¶ Orchestration: each application requires some resources (compute, network, disk space)

which are allocated on any IaaS platform.

¶ Provisioning: manage software requirements, installation and configuration.

The Big Data Capability Framework (BDCF) aims to provide those three layers. It brings a

packaged solution to create Big Data application clusters on demand, through an intuitive

administrative user interface. Big Data applications initially targeted by BDCF are mainly

distributed storage and processing (Hadoop) applications based on MapR or Hortonworks and

Log Analysis applications based on Elastic Stack components. In addition, BDCF provides other

useful components like a message broker (Kafka), a consensus system (Consul), a studio for data

scientists (RStudio) and other technical components like Java and Python, allowing a detailed

technical architecture design.

All components described above are part of a catalogue and can be connected all together to

create distributed applications. Catalogue and application design is managed through a software

named Alien4Cloud which provides an intuitive graphical user interface (GUI). It is a tool, part of

BDCF, that aims to provide management for enterprise cloud and help enterprise to move their

applications to a cloud, and based on project constraints, reach continuous delivery.

As moving to the cloud for an enterprise is a structural change, Alien4Cloud leverages the

TOSCA
1
 standard that is the most advanced and supported standard for the cloud. TOSCA stands

for Topology and Orchestration Specification for Cloud Applications, it is an OASIS open standard

that defines the interoperable description of services and applications hos ted on the cloud and

elsewhere; including their components, relationships, dependencies, requirements, and

capabilities, thereby enabling portability and automated management across cloud providers

regardless of underlying platform or infrastructure. These characteristics also facilitate the

portable, continuous delivery of applications (DevOps) across their entire lifecycle .

The usage principle of BDCF is illustrated in the figure below, where the application designer

defines the blueprints of the components (also known as topology) which compose her/his

application software suite through the graphical TOSCA tool (Alien4Cloud), selecting her/his

components in the BDCF catalogue, assembling and configuring them, and then benefiting from

the automated orchestration of this topology.

1
 https://www.oasis-open.org/committees/tosca

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 11 of 76

Catalog

Connectors

Analytics

Visualization

Application
Designer

« IntegrationPaaS»

HostingPlatform

VMVMVM VM VM

Graphical
TOSCA based

tool

includecomponents for
building lambda

architecture, streaming,
in-memory processingΧ

deal with scalability,
reliability, securityΧ

partnerswill add
components for healthcare
deviceconnectivity, data

analysisΧ

Figure 1: BDCF Platform

The Orchestration layer also brings reliability and scalability, which provides the elasticity to use

the right amount of resources.

¶ Reliability: algorithms monitor the health of software components and virtual machine

state. If one of those is falling down, the orchestration tool is able to instantiate new

resources, to reconfigure and/or restart the service.

¶ Scalability: application designer can scale out some resources at deployment step or

dynamically allocate more or fewer resources post deployment according to its needs.

This framework fits in the Medolution architecture as it enables the setting up and deployment of

Big Data Applications that will:

¶ rely on big data analysis components to implement the smart Medolution applications of

WP5 and the Medolution Use Cases. As the Medolution requirements are elaborated

during the project, additional components and topologies (blueprints representing

components assemblies) are added to the platform catalogue.

¶ rely on connector components to interconnect Medolution identified healthcare devices

(WP3) and Medolution healthcare data warehouses to the data processing services. Such

connector components are also introduced during the project.

4.2. Components catalogue and topologies

Big Data Capability Framework (BDCF) provides a catalogue of tools which allow Big Data actors

to store, analyse, explore, and visualize data coming from some different kinds of sources. Those

can be IoT devices, applications logs, etc...

In Medolution platform, these tools are described following the TOSCA standard. Each of them is

called a component. Alien4Cloud allows connecting these components to each other to create a

distributed application. This arrangement is called a topology.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 12 of 76

Once it has been designed, the application can be deployed, which will install, setup and start

software components.

Each component which follows the TOSCA standard must define at least some elements:

¶ Properties: fields which allow end-users to customize this component and could be used

at installation, configuration or start step.

¶ Attributes: properties which will be generated at runtime.

¶ Requirements: define a dependency from this component to other ones.

¶ Capabilities: simple description of what kind of operation the component will do.

¶ Artefacts: attached items which will be uploaded and used during component

instantiation.

Creating a BDCF component from existing software is a matter of defining the associated TOSCA

elements and developing the scripts that will allow configuring, installing, starting, and stopping

the component. A BDCF component developer guide [2] has been written and provided to

Medolution partners (available on the project SharePoint).

Components of BDCF to be used in Medolution, as well as those to be developed and included in

the catalogue for Medolution, are described in section 5.

4.3. Orchestrator and target Infrastructures

Big Data Capability Framework relies on an orchestrator to create applications over a Cloud

infrastructure. The aim is to coordinate Cloud resources to be able to deploy a defined distributed

application, based on its TOSCA description. The orchestrator will check available resources, will

hold it and then use it. Some post deployment step can be defined to manage resiliency, scaling

and monitoring. The current orchestrator supports some Cloud infrastructure like Amazon Web

Services, VMWare or Azure. Medolution infrastructure is currently based on Openstack, an open

source Infrastructure as a Service (IaaS) solution.

4.4. Medolution security and privacy

The main security goal in WP4 is to ensure data privacy in the context of Healthcare Big Data

processing. This involves dealing with data privacy at the level the Big Data storage capabilities,

and at the level of Data collection capabilities, i.e. HealthCare Data Warehouse connectors (like

EHR connectors), Device Connectors.

Two aspects are addressed in the project:

¶ The Big Data Platform security by itself, i.e. securing data access and data

communication with the platform itself

¶ Data Anonymization capabilities, where the specification regarding Data Anonymization

components has been provided.

Both are described in section 7.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 13 of 76

5. The Medolution Big Data components catalogue

This section describes the components that will be made available in the Platform catalogue to

enable Medolution application providers to compose their application.

This includes:

Á the TOSCA description of each component and corresponding relationships (how they

connect to other components),

Á their APIs,

Á their high availability and scalability capabilities,

Á their security features

These components are building blocks to support any kind of data analysis applications,

especially for handling streaming real time big data processing, and for dealing with medical

devices and information system connection, as it was required by the Medolution project (in FPP

and D1.1 [3]). Not all these components are currently used in Medolution use cases; sometime it

is a matter of timeline, since they will be used later in the project; also the use cases requirements

do not cover all possibilities in term of data processing. The French and German uses cases are

already using some of these components.

5.1. Core Foundational Components

Some of the components described in this section may use one or both of the technical

components below:

Á The Java component is a technical component allowing other software components to

choose the required Java version.

Á Consul is a technical component allowing other software components to discover each

other in a flexible, highly available and fault tolerant way. The same Consul component is

used for two different purposes: it can run as a Consul Server or as a Consul Agent.

Consul Servers are responsible for storing and replicating data between themselves, while

Consul Agents are responsible for registering functional services, store servicesô

distributed configuration, performing health checks on nodes hosting those services and

serving service discovery requests through their DNS interface.

Á The Compute Node component represents a Virtual Machine to be allocated and on which

the components will run.

5.2. Data collection and storage components

This section describes a set of BDCF components which are concerned with collecting data from

various sources and storing them for future processing. Subsequent sections will describe

components for processing data.

5.2.1. Elasticsearch

Elasticsearch is a search server based on Apache Lucene. It provides a distributed, multitenant -

capable full-text search engine with a RESTful Web interface and schema-free JSON documents.

In the Elastic Stack architecture, Elasticsearch is the database that stores the logs sent by

Logstash, and provides to Kibana the needed data for visualization.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 14 of 76

The infrastructure administrator needs to understand the following Elasticsearch internal

concepts:

¶ For Elasticsearch underlying concept, management and configuration refer to the official

documentation: https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

¶ For more information on Apache Lucene, refer to http://lucene.apache.org/.

5.2.1.1. Elasticsearch API

The Elasticsearch tool is accessible via a REST API which offers a way to read and write data on

the datastore.

5.2.1.2. Elasticsearch Relationships

The only prerequisite of the Elasticsearch component is to be attached to a Java component that

is configured to use Java 7 or greater. This Java component must be hosted on a Compute

component.

The Elasticsearch component must be connected to a Consul Agent hosted on the same Compute

node, to perform cluster discovery. This connection to a Consul Agent is prerequisite when:

Á the Elasticsearch cluster has several nodes, or

Á the Elasticsearch search_endpoint capability is used.

Elasticsearch has the capability to be used as a search_endpoint by the Logstash and Kibana

components. This means that you can connect the components that use Elasticsearch by setting

their search_endpoint prerequisite.

In the Elastic Stack chain, Logstash and Kibana use Elasticsearch as target database. The data is

stored in indexes dedicated to those components.

Elasticsearch includes indexes containing the logs provided by Logstash. By default Logstash

creates one different index per day, named Logstash-YYYY-MM-dd. It is possible to override this

name in the Logstash configuration file by modifying the index option.

Kibana stores its configuration into Elasticsearch under the kibana index. Do not modify it

manually or remove it if you want Kibana to work properly.

5.2.2. Kafka

Kafka is a distributed, partitioned and replicated publish-subscribe messaging system.

In the Elastic Stack architecture, Kafka offers the following features:

Á Store into a Highly Available, fault tolerant system, the logs ingested by the Elastic Stack

before their indexing by Logstash.

Á Load-Balance data across the Kafka cluster and between its subscribers (Logstash

Indexer in our case) by natively partitioning data across the cluster.

Á Decouple the processing part of the Elastic Stack architecture from the ingestion part by

implementing a retention queue.

The Kafka community uses the following terminology:

http://lucene.apache.org/

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 15 of 76

Á Kafka maintains feeds of messages in categories named topics. Topics are split into

partitions, which brings data reliability between all nodes of the Kafka cluster ;

Á Processes that publish messages to a Kafka topic are named producers

Á Processes that subscribe to topics and process the feed of published messages are

named consumers.

Á Kafka runs as a cluster of one or more servers. Each of these servers is named a broker.

5.2.2.1. Kafka API

Kafka provides some Java API which allows a user to consume, publish or stream the content of a

Kafka broker.

5.2.2.2. TOSCA component description

Kafka

In the Elastic Stack architecture, Kafka topics are connected with a Logstash instance named the

shipper, which is responsible to ingest logs from different inputs (for instance Rsyslog or

lumberjack) and which acts as the producer by publishing those logs into Kafka topics. On the

other hand, Kafka topics are connected with another Logstash instance named the index er, which

consumes published logs in order to process them.

A Kafka node is hosted on a Java node, which is hosted itself on a Compute node. A Kafka node

requires to be related to a Consul Agent hosted on its Compute node. On top of this stack you can

deploy as many different topics as you need. Each topic has its own configuration.

The minimum and recommended version of Java is JRE7.

Properties

kf_heap_size: This property allows setting the heap memory size that is allocated to

Kafka java process, It allocates the same value to both initial and maximum values (ie -Xms and -

Xmx java options).

default: ñ1Gò

zk_heap_size: This property allows setting the heap memory size that is allocated to

Zookeeper java process (ZooKeeper is a coordination service for distr ibuted applications, the

corresponding BDCF component, built on the MAPR Zookeeper element, is not detailed in this

documentation). It allocates the same value to both initial and maximum values (ie -Xms and -

Xmx java options).

default : ñ500Mò

repository: This property gives the opportunity to specify an alternative download

repository for this component artefacts. It is your responsibility to provide an accessible download

url and to store required artefacts on it. You should specify only the base repository url. Artifacts

names will be appended to it, so this property could be shared among several components using

the inputs feature.

default : ñò

Requirements

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 16 of 76

java: Kafka should be hosted on a Java component. Java 7 or greater is required.

host: Kafka component has to be hosted on a Compute.

consul: Kafka component has to be connected to a local (hosted on the same Compute)

Consul Agent. This is required to perform cluster discovery.

filesystem_endpoint: Kafka may be connected to a filesystem in order to store its

runtime data on it. A typical use case would be to link this filesystem to a block storage in order to

achieve data resilience and recovery.

Kafka Topic

A Kafka Topic should be hosted on a Kafka component and may be configured through the

following properties.

Properties

topic_name: The topic name (value should match the following pattern: [-_A-Za-z0-9]+)

default: ñò

partitions: Number of partitions for this topic

default : 1

replicas: Number of replicas for this topic. Should be at most the number of hosting Kafka

Component instances.

default : 1

min_in_sync_replicas: When a producer sets request_required_acks to in_syncs,

min_insync_replicas specifies the minimum number of replicas that must acknowledge a write for

the write to be considered successful. If this minimum cannot be met, then the producer will raise

an exception (either NotEnoughReplicas or NotEnoughReplicasAfterAppend). When used

together, min_insync_replicas and request_required_acks allow you to enforce greater durability

guarantees. A typical scenario would be to create a topic with a replication factor of 3, set

min_insync_replicas to 2, and produce with request_required_acks of in_syncs. This will ensure

that the producer raises an exception if a majority of replicas do not receive a write.

default : 1

retention_minutes: The number of minutes to keep a log file before deleting it.

default: 10080 (7 days)

segment_minutes: The number of minutes after which Kafka will force the log to roll even

if the segment file isnôt full to ensure that retention can delete or compact old data.

default: 10080 (7 days)

segment_bytes: Segment file size for the log.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 17 of 76

default: 1073741824 (1GB)

Requirements

kafka_host: Kafka topics are hosted on Kafka components.

5.2.2.3. Kafka Relationships

Any Kafka node is related to a Consul Agent hosted on the same Compute node. This relationship

is obtained by binding the consul prerequisite of the Kafka node to the agent capability of the

Consul node.

As explained above, in the Elastic Stack architecture Kafka topics are connected with a Logstash

that publishes messages and another Logstash that consumes those messages.

5.2.3. Logstash

Logstash is a tool for receiving, processing and outputting logs. All kinds of logs are concerned:

system logs, webserver logs, error logs, application logs, etc. Logstash provides a powerful

pipeline for storing, querying, and analysing logs. It includes an arsenal of built-in inputs, filters,

codecs, and outputs.

The Logstash event processing pipeline includes three stages:

Inputs Ÿ Filters Ÿ Outputs

Inputs generate events, Filters modify them, and Outputs ship them elsewhere.

Á Inputs are used to get data into Logstash (see

https://www.elastic.co/guide/en/logstash/2.3/input-plugins.html). Some of the most

commonly-used inputs are:

- File: Reads from a file on the filesystem.

- Syslog: Listens on the port 514 for syslog messages and parses according to the

RFC3164 format.

- Lumberjack: Processes events sent in the lumberjack protocol.

- Elasticsearch: Reads query results from an Elasticsearch cluster.

Á Filters are intermediary processing devices in the Logstash pipeline (see

https://www.elastic.co/guide/en/logstash/2.3/filter-plugins.html). You can combine filters

with conditionals to perform an action on an event if it meets certain criteria. Some useful

filters include:

- Grok: Parse and structure arbitrary text. Grok is currently the best way in

Logstash to parse unstructured log data into something structured and queryable.

- Mutate: Perform general transformations on event fields. You can rename,

remove, replace, and modify fields in your events.

- Drop: Drop an event completely, for example, debug events.

- Clone: Make a copy of an event, possibly adding or removing fields.

- Geoip: Add information about geographical location of IP addresses.

Á Outputs are the final phase of the Logstash pipeline (see

https://www.elastic.co/guide/en/logstash/2.3/output-plugins.html). An event can pass

through multiple outputs, but once all output processing is complete, the event has

finished its execution. Some commonly used outputs include:

https://www.elastic.co/guide/en/logstash/2.3/input-plugins.html
https://www.elastic.co/guide/en/logstash/2.3/filter-plugins.html
https://www.elastic.co/guide/en/logstash/2.3/output-plugins.html

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 18 of 76

- Elasticsearch: Send event data to Elasticsearch. If you plan to save your data in

an efficient, convenient, and easily queryable format Elasticsearch is the way to

go.

- File: Write event data to a file on disk.

A Logstash node should be hosted on a Java node, which is hosted itself on a compute node .

The TOSCA component description exposes the following properties and artefacts:

Properties

version: Version number

repository: Allows you to specify an alternative download repository for a Logstash

binary.

auto_reload: Boolean property set to false by default. If set to true, Logstash monitors

configuration changes and reloads configuration whenever it is changed.

reload_interval: If auto-reload is true, this property specifies how frequently to poll the

configuration location for changes, in seconds.

stdout: Boolean property set to false by default. When set to true, the simple stdout

output is added to the output configuration of Logstash.

heap_size: Allows setting the heap memory size for Logstash java process. Default value

is 500M. It allocates the same value to both initial and maximum values (ie -Xms and -Xmx java

options).

log_level: Define Logstash log level. By default it is quiet and very few logs are generated

by Logstash. All logs are redirected to a file except if you set óstdoutô to ótrueô.

Artefacts

input_conf: input configuration

output_conf: output configuration

filter_conf: filter configuration

5.2.4. HBase

HBase is a non-relational database based on Hadoop distributed filesystem which allows storing

billions of rows of millions of columns. This is a distributed and scalable database system.

HBase is made up of two distinct components: HBase Master and HBase Region server.

5.2.4.1. HBase Master

HBase Master is the database system endpoint. It allows user to ask for accessing or pushing

data inside its database and manages HBase Region Server instances.

HBase API

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 19 of 76

HBase provides some Java classes which allow to interact with HBase master and to create table,

upload, read dataé A Web interface is also available for end user.

TOSCA component description

HBase Master implementation in BDCF is part of MapR distribution. The component name in the

BDCF catalogue is MapRHBaseMaster.

Properties

MapRHBaseMaster does not have any properties.

Requirements

MapRHBaseMaster requires to be hosted on MaprWarden
2
.

Capabilities

hbase_master_endpoint: allows connecting any Alien4Cloud component to this one. It

can be used for MapRHUE
3
 requirement.

Artefacts

tools: MapR utility scripts.

utils_scripts: Common utility scripts for whole BDCF components.

5.2.4.2. HBase Region Server

HBase Region server is the low level database management component. It stores data and

answer user requests. In general, several instances are instantiated.

TOSCA component description

HBase Region Server implementation in BDCF is part of MapR distribution. The component name

in A4C catalogue is MapRHBaseRegionServer.

Properties

MapRHBaseRegionServer does not have any properties.

Requirements

MapRHBaseRegionServer requires to be hosted on MaprWarden.

Capabilities

2
 Warden is a light Java application that runs on all the nodes in a MAPR Hadoop cluster and coordinates

cluster services. The corresponding BDCF component is not detailed in this document.
3
 HUE is the User Interface to interact with Apache Hadoop and its ecosystem components, such

as Hive, Pig, and Oozie. The corresponding BDCF component is not detailed in this document.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 20 of 76

hbase_region_server_endpoint: allows connecting any Alien4Cloud component to this

one.

Artefacts

tools: MapR utility scripts.

utils_scripts: Common utility scripts for whole BDCF components.

5.2.5. Hive

Hive is a data warehouse system for Hadoop that facilitates easy data summarization, ad -hoc

queries, and the analysis of large datasets stored in Hadoop-compatible file systems, such as the

MapR Data Platform (MDP). Hive provides a mechanism to project structure onto this data and

query the data using a SQL-like language called HiveQL. At the same time this language also

allows traditional map/reduce programmers to plug in their custom mappers and reducers when it

is inconvenient or inefficient to express this logic in HiveQL.

5.2.5.1. Hive API

Hive provides Java API to interact with HiveServer2 and Hive Metastore.

TOSCA component description

Properties

MapRHive does not have any properties.

Requirements

MapRHive requires to be hosted on MapRWarden. If you have multiple MapRHive

components, you need to resolve these needs:

hive_registerTo_haproxy: can be connected to a HAProxyTCPHive component to

manage load-balancing.

hive_connectsTo_mysql: can be connected to a MySQLDatabase component to

externalize the Hive Metastore.

Capabilities

hive_endpoint: allows connecting any Alien4Cloud component to this one. It can be used

for MapRHUE requirement.

Artefacts

tools: MapR utility scripts.

utils_scripts: Common utility scripts for whole BDCF components.

hive_files: Required MapRHive template configuration files.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 21 of 76

5.2.6. Drill

Apache Drill is an open source, low-latency query engine for big data that delivers secure and

interactive SQL analytics at petabyte scale. With the abil ity to discover schemas on-the-fly, Drill is

a pioneer in delivering self-service data exploration capabilities on data stored in multiple formats

in files or NoSQL databases. Drill is fully ANSI SQL compliant and integrates seamlessly with

visualization tools.

5.2.6.1. Drill API

Drill provides a REST API to connect and interact with the service running queries, performing

storage plugin tasks, such as creating a storage plugin, obtaining profiles of queries, and getting

current memory metrics. A Web UI is also available.

TOSCA component description

Properties

MapRDrill does not have any properties.

Requirements

MapRDrill requires to be hosted on MapRWarden.

Capabilities

drill_endpoint: allows connecting any Alien4Cloud component to this one.

Artefacts

tools: MapR utility scripts.

utils_scripts: Common utility scripts for whole BDCF components.

5.2.7. Flume

Apache Flume provides a way to easily and efficiently move data from a source to a sink. It is

based on a simple and flexible architecture which uses streaming data flows.

5.2.7.1. Flume API

Flume offers a way to interact with its service using a Java API.

TOSCA component description

Flume implementation in BDCF is part of MapR distribution. The component name in A4C

catalogue is MapRFlume.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 22 of 76

The output configuration is bound to MapR filesystem, although no relationship is necessary for

that purpose.

When MapRFlume is not connected to Kafka, it is configured to open a port with Netcat on port

44444 and store data in MapR filesystem.

Properties

component_version: Version of the Flume component integrated

default: 1.6.0

hdfs_path: Flume is configured to use HDFS as sink. An alternative path in MaprFS can

be provided.

default: maprfs:///user/mapr/flume/kafka_input/%y-%m-%d-%H

Requirements

MapRFlume requires to be hosted on MapRWarden

kafka_input: Input must be set to a Kafka Topic

Capabilities

flume_endpoint: allows connecting any Alien4Cloud component to this one.

Artefacts

tools: MapR utility scripts.

utils_scripts: Common utility scripts for whole BDCF components.

flume_files: Required Flume template configuration files. An example of this file is given

in BDCF user documentation.

5.3. Device connector component

Another way to collect data is to get it directly from devices. A device connector component is a

Medolution component available in the platform catalogue, that can be easily incorporated in an

application topology in order specify the input data flow for such an application. Its purpose is to

collect a data flow from outside the platform, and to route it toward any Big Data component to be

used for the application needs, i.e. an analytics processing component, a data storage

component, etc.

In this section, different kinds of devices to be connected in the Medolution project are described.

Section 5.3.1 describes the communication with devices that are conforming international data

exchange standards. The issue with the devices whose data can only be accessed from

proprietary interfaces is introduced in section 5.3.2. This results in two categories of devices to be

considered. For the first category, devices whose data is directly accessible via the APIs provided

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 23 of 76

by the devices is described in section 5.3.3., The data to be collected with their respective

standard and formatting information is described in section 5.3.3.1, and the Device Connector

Component external API, i.e. the API to be used from outside the Medolution platform to inject

data, is described in section 5.3.3.2. In section 5.3.4, the integration with devices where device

manufacturer does not expose to the user the data generated by the device is presented.

5.3.1. Devices to be connected

There are several devices that can be integrated into the Medolution platform to collect

information about the patients and deduce meaningful results for the physicians through health

data analytics. Although Medolution prefers to use international and national standards for

integration, most of the devices used in the healthcare sector are not conformant to the standards.

It can be said that each manufacturer creates its own data models, serialization formats and/or

protocols and this makes the integration impossible without their inclusion in the development

process. For example, considering the LVAD use-cases, there are different LVAD manufacturers

which are currently implanted into several patients. Most of them are even not providing any

remote monitoring capability, though the one providing such a capability is not doing this through

an open standard and this makes the integration impossible.

Apart from the proprietary devices, Medolution enables to collect information from many other

devices which conform to international standards. This section covers the standards based

connector components because the proprietary ones needs to be integrated through custom

implementations for each device used for the respective use-cases.

The standards based interaction with the Medolution devices is one-way; data is collected from

the devices into the Medolution platform. LVAD use-cases include devices (i.e. LVAD pumps)

which require two-way communication; some parameters of the pumps are needed to be adjusted.

These kinds of interactions are solved through custom implementations during the pilot

implementations.

5.3.1.1. Bluetooth enabled medical devices

Personal health devices that use Bluetooth as a communication medium, based on ISO/IEEE

11073
4
 standards, can be used as data sources to Medolution Big Data platform. These devices

can be blood pressure monitors, glucometers and the like Continua Health Alliance compliant

medical devices covering the Medolution use-cases defined in D1.2 ï As-Is Landscape of Clinical

Care at Pilot Sites and To-Be Pilot Application Scenarios.

ISO/IEEE 11073

ISO/IEEE 11073 Health Informatics - Medical / health device communication standards are a

family of ISO, IEEE, and CEN joint standards addressing the interoperability of medical devices.

Continua Health Alliance(CHA)
5
 conformant products make use of the ISO/IEEE 11073 Personal

Health Data (PHD) standards that specifically address the interoperability of personal health

devices. The standard has the concept of agents and managers that defines communicating

parties. Agents are typically small, battery-powered medical devices whereas managers are

typically computers or smart phones. Agents are restricted to communicate with a single manager

at a time yet managers can communicate with multiple agents. An example would be a smart

phone as a manager, connected to multiple medical devices of a patient, e.g. weighing scale,

4
 http://www.11073.org/

5
 http://www.continuaalliance.org/

http://www.11073.org/
http://www.continuaalliance.org/

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 24 of 76

thermometer, and insulin pump. Communication is bi-directional; weighing scale can send

measurements to phone as well as phone can control insulin pump. The standard only defines

messages that travel between agents and managers but not the transport protocol. Bluetooth,

Zigbee or USB can be used to transfer messages.

5.3.1.2. Activity tracker wristband

We enable activity tracking wristband as an additional data source to be able to collect more

useful information from patients. Most of the commercial activity tracker wristbands has their own

restricted APIs and does not allow direct data access with Bluetooth or other communication

protocols. As a result of investigating other open options, Angel Sensor
6
 stands out as it offers

fully open access to its data with Bluetooth Low Energy communication.

Angel Sensor provides Heart Rate, Health Thermometer measurements as standard Bluetooth

Low Energy (BLE) services as well as step count, blood oxygen saturation, fall detection,

accelerometer, gyroscope measurements as custom BLE services.

5.3.1.3. Smart phone

In consequence of having Bluetooth enabled health and activity data producing devices to collect

data from, a smart phone is used as a gateway between these data sources and the Medolution

big data platform (BDCF). Both Android and iOS mobile devices can be used as a gateway since

the requirements are only Bluetooth and an Internet connection. The devices send their

measurements to the smart phone and an application (possible a dedicated Medolution app to

collect information and show some statistics to the user) is responsible to pass this information

conveniently to the Medolution BDCF servers.

Google Fit and Apple HealthKit

Using smart phones as a gateway enables us to gather more information from patients. Based on

the gateway device in use, Google Fit
7
 or Apple HealthKit

8
 is utilized in order to collect more data

from patients. Both Google Fit and Apple HealthKit is used as a health and activity data repository

by other health and fitness applications, furthermore Google Fit collects and derives its own data

using phone sensors and GPS location.

Google Fit provides various data types including heart rate, step count, nutrition and allows

developers to create custom data types
9
. Apple HealthKit also provides similar fitness related data

types along with health related types including blood glucose, oxygen saturation, body

temperature and the like
10

.

Mobile sensing library

Smart phones have various sensors and components that contain valuable information about

patients. To reach out this data, we use a mobile sensing library which can be configured to

collect desired data from mobile phone components periodically and store them in a p referred

6
 http://www.angelsensor.com

7
 https://www.google.com/fit/

8
 https://developer.apple.com/healthkit/

9
 https://developers.google.com/fit/android/data-types

10
 https://developer.apple.com/reference/healthkit/1627060-healthkit_constants

http://www.angelsensor.com/
https://www.google.com/fit/
https://developer.apple.com/healthkit/
https://developers.google.com/fit/android/data-types
https://developer.apple.com/reference/healthkit/1627060-healthkit_constants

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 25 of 76

format so that the mobile application can use this stored data to submit to the Medolution Big Data

platform.

5.3.2. Devices particularities with respect to data connection

The section above brings to light that from the functional point of view, the MEDOLUTION

DEVICE CONNECTOR shall output a unitary data format, able to accommodate the large variety

of heterogeneous data formats inner to the devices required by the MEDOLUTION use cases.

Thinking beyond the strict MEDOLUTION framework, such a unitary data format should also be

interoperable.

Actually, from the practical point of view, two different situations are encountered in practice. The

first situation corresponds to the case in which the device manufacturer exposes the data

generated by the application as well as the proprietary data format as direct output of the device.

In such a situation, the MEDOLUTION DEVICE CONNECTOR ensures a syntax management

function. Cf. Figure 2. From a conceptual point of view, the MEDOLUTION DEVICE CONNECTOR

includes data formats and API.

Figure 2: MEDOLUTION DEVICE CONNECTOR when the device proprietary data format is exposed.

The second situation corresponds to the case in which the device manufacturer does not expose

to the user the data generated by the device; instead, it encapsulates them into a proprietary

wrapper and subsequently forward them to a proprietary application which is supposed to process

and to present them to the user. In such a situation, the MEDOLUTION DEVICE CONNECTOR

becomes more complex, requiring an additional DEVICE PROXY whose functionality is to virtually

de-capsulate the data, cf. Figure 3 .

Figure 3: MEDOLUTION DEVICE CONNECTOR when the device proprietary data format is

encapsulated (Device 2) vs. exposed (Device 1).

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 26 of 76

Of course, from the data format and interfaces point of view, the Device Proxy and the Syntax

Manager should follow the same philosophy.

5.3.3. Medolution device connector when device data are exposed

5.3.3.1. Data to be collected

With the use of the devices and sensors, medical and personal data will be transferred to the big

data processing environment of Medolution. Types of such data form an abstraction layer can be

listed as follows:

Á Personal health data from medical devices (e.g. pulse, blood pressure, blood glucose)

Á Sensor data from implanted devices (e.g. LVAD)

Á Fitness and health data from activity tracker wristband (e.g. heart rate, skin temperature,

step count)

Á Health and Fitness records from Google Fit or Apple Healthkit.

Á Various information from mobile sensing library (e.g. GPS location, Wifi scan results)

Custom devices (which do not conform to the international standards, i.e. LVAD) serve data in

proprietary formats, hence they will be processed through custom implementations during the

project lifetime based on the specific data handling requirements.

For the ISO/IEEE 11073 based device integration and fitness/health sensor (wristlet) integration,

smart phones play the intermediary role to collect data from these personal devices and send

data to the Medolution Big Data platform through the specific APIs. This deliverable focuses on

the second part: transferring data to the platform through the APIs. There might be other sources

of data which can directly transfer data to the platform APIs without any Bluetooth intermediary

such as a smart phone.

The API structure follows the REST principles and the data model of the payloads is designed to

be based on Open mHealth.

Open mHealth

Open mHealth is a non-profit organization aiming integration of digital health data. They provide

common data schemas for mobile health data types.

Data point schema is used as the common format, as illustrated in Figure 4.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 27 of 76

Figure 4: An example of Open mHealth Data Point Schema

Basically, ñheaderò contains metadata about the resource whereas ñbodyò contains actual

measurement or value. Another ñbodyò example is blood glucose schema as shown in Figure 5.

Figure 5: "Body" if a blood glucose measurement through Open mHealth

5.3.3.2. Device Connector Application Program Interface (API)

The associated API for device data collection acts as an ñUpload Serviceò which is a Restful API

and used by the Bluetooth intermediaries (smart phones) to transfer the collected obtained data

from the devices to the Medolution Big Data platform. The API accepts binary and JSON payloads

for POST operation.

5.3.3.2.1. Binary payload

Binary payload endpoint accepts SQLite database files containing two tables: Data and FileInfo.

The table structure is presented in the ER diagram in Figure 6. The tables and the field can be

described as follows:

Á Data

- id: Holds database entry id.

- name: Holds the source of the value.

- timestamp: Holds the timestamp of the value.

- value: Holds the Open mHealth Data Point schema formatted value of the

resource.

Á FileInfo:

- id: Holds database entry id.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 28 of 76

- dbname: Holds database name.

- device: Holds unique device id which will be used to identify patients.

- installation: Holds unique installation id of the mobile application.

- uuid: Holds unique database file id.

- created: Holds the creation time of the database file.

Figure 6: Simple ER diagram of the binary payload of the API

The HTTP Post command should be issued as follows:

Á POST [base]/data

- The [base] indicates base URL for REST service e.g.

www.medolution.org/service/rest/upload

The content is provided using multipart form data format, with the parameter name ñuploadedfileò.

The service parses the given database file, and forwards its entries to relevant Big Data Platform

entry points.

Table 1: Binary payload of the API

Binary Payload

Allowed HTTP methods POST

Path including path parameters data

Query parameters Not applicable

POST data uploadedfile: {Database file content in binary}

Success POST response 200 ok

empty

Error responses 400 Bad Request - if file is not in desired structure.

415 Unsupported Media Type - if content-type is
not multipart form data

500 Internal Server Error - in case of internal
exception

5.3.3.2.2. JSON payload

JSON payload endpoints accepts Open mHealth formatted JSON lists. HTTP POST command will

be used as follows:

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 29 of 76

Á POST [base]/[source]/[type]

- The [base] indicates base URL for REST service e.g.

www.medolution.org/service/rest/upload

- The [source] indicates source of the data e.g. healthkit, ios.

- The [type] indicates type of the data e.g. location, wifi.

The content is provided with application/json format. The service forwards each element in the

given JSON List to relevant Big Data Platform entry points.

Table 2: JSON payload of the API

JSON Payload

Allowed HTTP methods POST

Path including path parameters /{source}/{type}

Query parameters Not applicable

POST data JSON list string

Success POST response 200 ok

empty

Error responses 400 Bad Request - if string is not in desired
structure.

404 Not Found - if {source} or {type} is invalid

500 Internal Server Error - in case of internal
exception

TOSCA component description

Component Name: DeviceConnector

Properties

port: The port of the API

Type: Integer

Constraints: [1, 65535]

Default: 8080

base-uri: Base uri of the API. (Binary payload complete Uri is -> [ip] : [port] / [base-uri] / data)

 Type: String

Default: "inbound"

Requirements

http://www.medolution.org/service/rest/upload

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 30 of 76

DeviceConnector component requires to be hosted on Java.

DeviceConnector component requires connecting to a Kafka Topic.

DeviceConnector component requires connecting to a Consul agent.

Capabilities

kafka_output: allows connecting to a Kafka topic.

consul: allows connecting to a Consul agent

Artifacts

scripts: Lifecycle scripts of the DeviceConnector component

utils_scripts: Common utility scripts for whole BDCF components

consul_utils: Common utility scripts for Consul operations

runnable: Executable jar file of the RESTful web service

5.3.4. Medolution device connector when device data are not exposed

In such a situation (i.e. case 2 in Figure 3), the data generated by the device are encapsulated

into a proprietary wrapper and subsequently forward them to a proprietary application which is

supposed to process and to present them to the user.

As explained above, in such a situation, a Device Proxy should be considered in conjunction with

the Syntax Manager.

The DEVICE PROXY has three sub-modules: Virtual Access to the Application, the Virtual Control

of the Application and the Semantic Data interpreter, cf. Figure 7.

Figure 7: The Device Proxy overview

The interfaces towards and from the device proxy will follow the same philosophy as the Semantic

Manager: they are based on REST API and JSON formats.

At the time of writing of this document, two incremental medical devices have been dealt with in

Medolution.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 31 of 76

First, the Device Proxy has been instantiated for a medical card reader (the hardware device

ensuring the authentication of the medical professional and patients in France), as demonstrated

during the first Medolution Review (Dec. 2016). Rather than giving access to the data themselves,

this first step proved the possibility of virtualizing the devices together with their managing

applications.

A second step is represented by the work carried-on between December 2016 and September

2017 which was devoted to the Proof of Concept for connecting FitBit
11

 devices. The choice on

the FitBit series is justified by both their outstanding market penetration (hence, devices relevant

for the Medolution usage) and their strong constraints imposed by the manufacturer (hence,

devices relevant from the technical point of view): according to the state-of-the-art, in order to

build, specify, design and develop new applications for FitBit devices, the FitBit APIs must be

used.

The Medolution solution, disruptive with respect to this state-of-the-art, is synoptically presented

in Figure 8 below: while the device itself communicates with the FitBit server in a conventional

way, data are intercepted at the server level and packed/converted into xml/JSON formats.

Figure 8: Synopsys for the Medolution Device Connector instantiation for FitBit devices

The principles presented in Figure 8 above are enabled by a client-server software solution

working at two levels. First (see Figure 9 below), the session is initiated thanks to the credentials

the FitBit owner disposes of. Secondly (see Figure 10 below), the semantic data are parsed and

converted according to the Medolution specifications.

Figure 9: Medolution Device Connector instantiation for FitBit devices: session initiation

11

 www.fitbit.com

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 32 of 76

Figure 10: Medolution Device Connector instantiation for FitBit devices: data interception

On-going work is devoted on reconsidering and extending these principles for other types of

devices, like the ones belonging to iHealth
12

, for instance.

5.3.5. Conclusion

The MEDOLUTION Device Connector can be illustrated as in Figure 11 below.

Figure 11: Global view on the device Connector component and on its possible solution.

The final objective is to provide the means for connecting any kind of device to the Medolution

platform, through a BDCF component that will make that device data available for data analysis

and processing components. This handles any kind of data format, standard or proprietary, and

the cases where device data is not directly exposed but provided through proprietary device

dedicated applications. While the PoC is already granted, further work will be carried out in order

to identify the applicative perimeter of such a Medolution component.

12

 ihealthlabs.com

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 33 of 76

5.4. Data connector components

Data to be analysed could also be extracted from data warehouses like legacy databases , and

also directly from the existing Health Information Systems (HIS) that are currently running within

healthcare institutes, like hospitals, GP offices. In this case it will be useful to benefit from

components which encapsulate the reusable data extraction code, and that will be easy to

connect to Big Data storage or analytics processing components. This section presents a data

connector component to extract data from relational databases, and a connector to access data

from health information systems via HL7 standard interfaces.

5.4.1. Sqoop

Sqoop is a tool for efficiently transferring data from relational database management system

(RDBMS) to Hadoop. Sqoop is designed as client-server. Sqoop implementation in BDCF is part

of MapR distribution. Both client and server Alien4Cloud components are respectively named

MapRSqoop2Client and MapRSqoop2Server.

5.4.1.1. MapRSqoop2Server API

Server side is reachable via a REST API. Full documentation is available here:

https://sqoop.apache.org/docs/1.99.3/RESTAPI.html.

TOSCA component description

Properties

MapRSqoop2Server does not have any properties.

Requirements

MapRSqoop2Server requires to be hosted on MaprWarden.

Capabilities

sqoop2_server_endpoint: allows connecting any Alien4Cloud component to this one. It

can be used for MapRHUE requirement.

Artefacts

tools: MapR utility scripts.

utils_scripts: Common utility scripts for whole BDCF components.

5.4.1.2. MapRSqoop2Client API

Client side provide a Java API which facilitates Sqoop integration in Java applications.

TOSCA component description

Properties

MapRSqoop2Client does not have any properties.

https://sqoop.apache.org/docs/1.99.3/RESTAPI.html

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 34 of 76

Requirements

MapRSqoop2Client requires to be hosted on MaprWarden.

Capabilities

sqoop2_client_endpoint: allows connecting any Alien4Cloud component to this one.

Artefacts

tools: MapR utility scripts.

utils_scripts: Common utility scripts for whole BDCF components.

5.4.2. EHR Data Connector

A vast majority of health data created within healthcare institutes like hospitals, GP offices,

laboratories are locked up in the proprietary databases of the health information systems being

used in these institutes like Hospital Information systems, EHR Repositories, Laboratory

Information Systems, Radiology Information systems etc. Although these are stored mostly in

proprietary formats, standard based interfaces have started to be largely adopted by the HIS, to

enable interoperability among these systems, to exchange and re-use health data between

disparate systems and organisations. HL7 is one of the de-facto standards in healthcare industry

to enable interoperability. Hence, in Medolution, HL7 standard will be utilized as the basis of

HER Data connector API.

EHR Data connector component is designed as a RESTful API providing an interface for EHR

data integration on BDCF. The API is acting as an upload service and accepts HL7 CDA and HL7

FHIR payloads for POST operation. The serviceôs main purpose is to transport created or given

HL7 FHIR Bundles to the Big Data Platform entry point. Currently, Kafka is used for that purpose;

the bundles are sent to a Kafka topic. A specialized FHIR Repository based on the MongoDB

component of BDCF can be used for future integration.

5.4.2.1. HL7 Clinical Document Architecture (CDA)

Clinical Document Architecture (CDA), previously called Patient Record Architecture (PRA), is a

document markup standard that specifies the structure and semantics of a clinical document

(such as a discharge summary or progress note) for the purpose of exchange
13

. It is developed by

Health Level Seven (HL7)
14

, which is a not-for-profit ANSI accredited Standards Developing

Organization. Primary goal of HL7 is to provide standards for the exchange of clinical and

administrative data among healthcare systems.

A clinical document includes clinical observations and services about care events. A valid CDA

document is encoded in XML and conforms to the CDA XML Schema Definition (XSD), once any

possible user-specific extensions are removed. HL7 has released two versions of CDA so far.

Release 1 (R1) was approved by ANSI in 2000, and Release 2 (R2) in 2005.

13

 http://www.hl7.org/implement/standards/cda.cfm
14

 http://www.hl7.org

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 35 of 76

A CDA R2 document has two main parts, the header and the body. The CDA header defines the

context of the document by providing information on authentication, the encounter, the patient,

and the involved providers whereas the CDA body includes the clinical report. The body part can

be either an unstructured blob or a structured hierarchy that involves one or more section

components. Within a section, narrative blocks and CDA entries are defined. Machine -

processable clinical statements are represented by these CDA entries whereas the narrative

blocks are human readable forms of these clinical statements.

CDA has nine entry classes derived from the HL7 v3 Reference Information Model (RIM
15

): Act,

Observation, Observation-Media, SubstanceAdministration, Supply, Procedure, RegionOfInterest,

Encounter and Organizer. These entry classes provide a consistent representation of clinical

statements across various HL7 v3 specifications. For example, Observation is used for

representing clinical observations, SubstanceAdministration is used for representing medication

related events, Organizer is used for grouping clinical statements having a common context and

Act, as a generic purpose class, is used when the remaining specific entry classes are not

appropriate for defining the clinical information. According to their purpose of use, these entry

classes enable all the fields to provide information about a clinical statement in a structured

and/or coded manner; e.g. SubstanceAdministration has attributes for providing the medicine

product, the route of administration, dose, rate and timing of quantity in a structured way.

HL7 Consolidated CDA (C-CDA)
16

The Consolidated Templated implementation guide contains a library of CDA templates,

incorporating and harmonizing previous efforts from Health Level Seven (HL7), integrating the

Healthcare Enterprise (IHE), and Health Information Technology Standards Panel (HITSP). It

represents harmonization of the HL7 Health Story guides, HITSP C32, related components of IHE

Patient Care Coordination (IHE PCC), and Continuity of Care (CCD).

C-CDA implementation guide, in conjunction with HL7 CDA R2 standard, is used for implementing

a number of different CDA documents including Continuity of Care Document (CCD), which is

used in EHR Data Connector of Medolution.

5.4.2.2. HL7 Fast Healthcare Interoperability Resources (FHIR)
17

FHIR is a next generation standards framework created by HL7. FHIR combines the best features

of HL7ôs Version 2, Version 3 and CDA product lines while leveraging the latest web standards

and applying a tight focus on implementability.

The basic building block in FHIR standard is a ñResourceò which is smallest unit of exchangeable

content between healthcare systems. FHIR standard defines several common resources so that

different healthcare system implementers can use them to represent their data in their use cases.

For example, Observation
18

, Medication
19

, CarePlan
20

 are some clinical resource definitions, while

Patient
21

, Practitioner
22

, Organization
23

 are defined for identification of entities, and Encounter
24

,

15

 http://www.hl7.org/implement/standards/rim.cfm
16

 http://www.hl7.org/implement/standards/product_brief.cfm?product_id=258
17

 https://www.hl7.org/fhir/
18

 https://www.hl7.org/fhir/observation.html
19

 https://www.hl7.org/fhir/medication.html
20

 https://www.hl7.org/fhir/careplan.html
21

 https://www.hl7.org/fhir/patient.html
22

 https://www.hl7.org/fhir/practitioner.html
23

 https://www.hl7.org/fhir/organization.html

https://www.hl7.org/fhir/observation.html
https://www.hl7.org/fhir/medication.html
https://www.hl7.org/fhir/careplan.html
https://www.hl7.org/fhir/patient.html
https://www.hl7.org/fhir/practitioner.html
https://www.hl7.org/fhir/organization.html

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 36 of 76

Appointment
25

, Order
26

 are resource definitions for workflow management. Each resource can be

used in different use cases. Below is the set of Resources in FHIR.

Figure 12: FHIR Resources

Bundle

Typically one CCD document corresponds to multiple FHIR resources. To achieve the mapping,

FHIR Bundle resource, which is a container for a collection of resources, is used in EHR Data

Connector of Medolution.

24

 https://www.hl7.org/fhir/encounter.html
25

https://www.hl7.org/fhir/appointment.html
26

 https://www.hl7.org/fhir/order.html

https://www.hl7.org/fhir/encounter.html
https://www.hl7.org/fhir/appointment.html
https://www.hl7.org/fhir/order.html

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 37 of 76

5.4.2.3. CDA Payload

The service accepts HL7 Consolidated CDA (C-CDA) 2.1 Continuity of Care Document (CCD)

instances encoded in XML, creates the corresponding HL7 Fast Healthcare Interoperability

Resources (FHIR) Transaction Bundle JSON, and then sends the Bundle to the configured Kafka

topic to be consumed by Big Data components on BDCF.

CDA Payload

Allowed HTTP methods POST

Path including path parameters /cda

Query parameters Not applicable

POST data C-CDA CCD XML document

Success POST response 200 ok

empty

Error responses 400 Bad Request - if xml document is not in CDA
structure.

500 Internal Server Error - in case of internal
exception

5.4.2.4. FHIR Payload

The service also accepts HL7 FHIR Bundle JSON Strings and forwards them to the configured

Kafka Topic to be consumed by Big Data components on BDCF.

FHIR Payload

Allowed HTTP methods POST

Path including path parameters /fhir

Query parameters Not applicable

POST data FHIR Bundle resource JSON

Success POST response 200 ok

empty

Error responses 400 Bad Request ï if faulty JSON.

500 Internal Server Error - in case of internal
exception

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 38 of 76

5.4.2.5. TOSCA Component Description

Component Name: EHRDataConnector

Properties

port: The port of the API

Type: Integer

Constraints: [1, 65535]

Default: 8081

base-uri: Base uri of the API. (CDA payload complete Uri is -> [ip] : [port] / [base-uri] / cda)

 Type: String

Default: "ehr"

Requirements

EHRDataConnector component requires to be hosted on Java.

EHRDataConnector component requires connecting to a Kafka Topic.

EHRDataConnector component requires connecting to a Consul agent.

Capabilities

kafka_output: allows connecting to a Kafka topic.

consul: allows connecting to a Consul agent

Artifacts

scripts: Lifecycle scripts of the EHRDataConnector component

utils_scripts: Common utility scripts for whole BDCF components

consul_utils: Common utility scripts for Consul operations

runnable: Executable jar file of the RESTful web service

5.5. Data analytics components

The following subsections describe the BDCF components which allow application developers to

analyse the data which has been gathered and stored using the components from the previous

sections.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 39 of 76

5.5.1. Rstudio

RStudio Server is a web based integrated development environment (IDE) for R. I t includes a

console, syntax-highlighting editor that supports direct code execution, as well as tools for

plotting, history, debugging, and also workspace management.

5.5.1.1. Rstudio API

Rstudio has been developed to provide an integrated development environment as Web UI to

allow end user to easily design an R application.

TOSCA component description

Properties

proxy_to_use: Setup a proxy configuration in Renviron.site in order to allow downloading

remote packages. If a value is set for this property then it will be used as http and https proxy (it

should honour the unix http_proxy env var format). If not set or set to an empty string then the

default environment proxy settings on the compute will be used (http_proxy, https_proxy and

no_proxy). This is the default. If set to óNoneô then proxies are not configured at all.

default : ñò

cran_mirror_to_use: Mirror for R packages downloads to use. This allows setup and

using your own mirror.

default : ñhttp://cran.r-project.orgñ

user_to_create: Name of the unix account to be created and used to connect to RStudio

default : ñrstudioò

password_to_create: Password of the unix account to be created and used to connect to

RStudio

default : ñrstudioò

repository: This property give the opportunity to specify an alternative download

repository for this component artifacts. It is your responsibility to provide an accessible download

url and to store required artifacts on it. You should specify only the base repository url. Artifacts

names will be appended to it, so this property could be shared among several components using

the inputs feature.

default : ñò

Requirements

host: RStudio server component has to be hosted on a Compute.

Attributes

url: This attribute contains the URL used to access the RStudio UI. This attribute is only

valid if the Compute on which RStudio is hosted is connected to a public network.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 40 of 76

5.5.2. Python

Python is a programming language commonly used by Data Scientists to develop data analysis

algorithms. The Python component installs Anaconda and optionally some Python libraries.

Anaconda is both a package manager, an environment manager and a Python distribution (Cf.

https://docs.continuum.io).

A Python node is hosted on a Compute node. The components that need Python are hosted on

the Python node.

TOSCA component description

Properties

repository: Allows to specify an alternative download repository for Anaconda and the

additionnal packages. The repository must contain the Anaconda install script (.sh) and a tar file

containing librairies packaged as tar.bz2 (anaconda, conda, conda-env, configparser, csvkit, dbf,

oauthlib, plotly, pybrain, requests-oauthlib, seaborn, twython).

nlp_twitter (checkbox): If checked, installs additional packages for Natural Language

Processing and twitter API (nltk, twython).

dataviz (checkbox): If checked, installs additional packages for data visualization

(seaborn, plotly).

dataformat (checkbox): If checked, installs additional packages for data formatting

(csvkit, configparser).

pybrain (checkbox): If checked, installs Python-based reinforcement learning, artificial

intelligence and neural network library (pybrain).

Capabilities

Python_host: Python is the component hosting Jupyter component

Artefacts

scripts: Python required scripts.

utils_scripts: Common util scripts for whole BDCF components.

5.5.3. Jupyter

The Jupyter component installs the Jupyter notebook, a Web application that allows you to create

and share documents that contain live code, equations, visualizations and explanatory text. Uses

include data cleaning and transformation, numerical simulation, statistical modeling, machine

learning and much more (Cf. http://jupyter.org/).

A Jupyter node is hosted on a Python node.

TOSCA component description

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 41 of 76

Properties

repository: Alternative download repository for Anaconda and the additionnal packages.

irkernel (checkbox): If checked, installs the iRKernel, a Jupyter kernel for the R language

(https://github.com/IRkernel/IRkernel, https://irkernel.github.io).

py35kernel (checkbox): If checked, installs the Jupyter kernel for Python v3.5.

spark-kernel (checkbox): If checked, installs the Jupyter kernel that can interact with

Apache Spark and allows you to develop in Scala language.

Requirements

python: Jupyter requires to be hosted on python component.

filesystem_endpoint: Jupyter may be connected to a filesystem in order to store its

runtime data on it.

Artefacts

scripts: Jupyter required scripts.

utils_scripts: Common util scripts for whole BDCF components.

data_file: Jupyter additional scripts.

5.5.4. NIFI

Nifi is a technical component allowing data acquisition, simple event processing, transport and

delivery mechanism designed to accommodate the diverse data flows generated by connected

systems (Databases, Sensors, Data Lakes, Data Platforms).

Nifi is used for data ingestion to pull data into NiFi, from numerous different data sources and

create FlowFiles using a process group. A Process Group is a specific set of processes and their

connections, which can receive data via input ports and send data out via output ports. In this

manner, process groups allow creation of entirely new components simply by composition of other

components. Processes are implemented by processors; Nifi includes almost 180 predefined

processors for different kinds of treatments the user may customize.

Nifi executes within a JVM on a host operating system. The primary components of Nifi on the

JVM are as follows:

Å Web Server: The purpose of the web server is to host NiFiôs HTTP-based command and

control API.

Å Flow Controller: The flow controller is the brain of the operation. It provides threads for

extensions to run on, and manages the schedule of when extensions receive resources to

execute.

Å Extensions: There are various types of Nifi extensions that can be added.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 42 of 76

Å FlowFile Repository: The FlowFile Repository is where NiFi keeps track of the state of

what it knows about a given FlowFile that is presently active in the flow.

Å Content Repository: The Content Repository is where the actual content bytes of a given

FlowFile live.

Å Provenance Repository: The Provenance Repository is where all provenance event data

is stored.

Figure 13 shows a Nifi template example, where processors are linked together.

Figure 13: Nifi Template Example

The above template collects tweets from twitter API, extracts some of their fields, formats the

date, parses the results into a JSON format and ingests them into Elasticsearch.

TOSCA component description

Properties

repository: Specifies an alternative download repository for Nifi binary

installation_directory: Allows you to choose where to install Nifi binaries

ï Default: ~/nifi.

Requirements

java: Nifi node must be hosted on a Java node, which is hosted i tself on a compute node.

The minimum version of Java is JRE8

Artefacts

utils_scripts: Common util scripts for whole BDCF components.

Figure 14 shows Nifi node configuration within BDCF GUI.

D4.4 Medolution Platform APIs and
Specification V2.

Final

Medolution Consortium. Public Page 43 of 76

Figure 14: Nifi Node Configuration

Figure 15 below shows a typical BDCF Topology used to deploy the use case of tweets analysis

of Figure 13. It deploys Nifi on one node and ElasticSearch and Kibana on another node. Tweets

are filtered and formatted in Nifi and then stored in ElsaticSearch and displayed in Kibana.

Figure 15: Nifi BDCF Topology Example

5.5.5. Flink

Flink_JobManager and Flink_TaskManager are the BDCF components implementing the Apache

Flink software (https://flink.apache.org), an open source platform for distributed stream and batch

data processing. Flink is a streaming dataflow engine that provides data distribution,

communication, and fault tolerance for distributed computations over data streams. It is typically

